

 1

Implementing certificates, TLS, HTTPS
and opportunistic TLS
First published: October 2019
Last updated: October 2021

Introduction
Transport Layer Security (TLS) is a widely used encryption protocol which enables parties to communicate securely
over the internet. Through the use of certificates and Public Key Infrastructure (PKI), parties can identify each other
through a trusted intermediary and establish encrypted tunnels for the secure transfer of information.

Using the TLS configuration guidelines outlined in this publication will help strengthen encryption and authentication
for web and email communications.

Encrypting web traffic

TLS and Hypertext Transfer Protocol Secure (HTTPS) are protocols that provide encryption and authentication to
reassure people (herein referred to as users) that they are connecting to websites they intend to, and that their
interactions are not able to be viewed or modified. These protocols are underpinned by cryptographic documents,
known as certificates, which can authenticate the identity of websites.

All public-facing websites and Hypertext Transfer Protocol (HTTP)-enabled application programming interfaces (APIs)
should use HTTPS to protect the confidentiality and integrity of website communications.

Encrypting email traffic

Opportunistic TLS can be used with the Simple Mail Transfer Protocol (SMTP) to protect the confidentiality and
integrity of email. Using TLS and certificates, mail servers are able to authenticate one another and established
encrypted communications before transferring email.

All mail servers should offer and use TLS to protect the confidentiality and integrity of email messages whenever
possible.

Public Key Infrastructure

PKI arrangements are a key component of the assurance process that enables websites and mail servers to be
authenticated. This is achieved by trusted Certificate Authorities (CAs) that vouch for server identities and attest the
public key contained in a certificate belongs to the entity noted on the certificate.

Implementing certificates, TLS, HTTPS and opportunistic TLS 2

How certificates, TLS, HTTPS and opportunistic
TLS work

Certificates

Many internet protocols use X.509 certificates to allow web browsers and systems to authenticate websites and
servers using public-key cryptography. For example, when a user attempts to access a HTTPS-enabled website, the
web server sends the user’s web browser its public key contained in a certificate, and demonstrates it has the
corresponding private key. The web browser then checks that the certificate was issued by a trusted CA, is valid and
was issued to the domain of the website the user is accessing.

To receive a certificate, a server owner will need to apply to a CA and demonstrate that they have control over the
domain for which they are requesting a certificate.

Certificate Authorities in web browsers

Common web browsers (e.g. Google Chrome, Firefox, Microsoft Edge and Safari) maintain their own list of trusted
CAs. If a user visits a website which offers a certificate signed by a trusted CA, the web browser will accept the
certificate without displaying a trust error. However, if a user visits a website which offers a certificate which is not
signed by a trusted CA, the web browser will display an error message and refuse to make an encrypted connection
until the user acknowledges the risk.

In practice, common web browsers’ trusted CAs are closely aligned. Further, when one web browser developer
chooses to remove a trusted CA they will often coordinate with other web browser developers, or other web browser
developers will shortly follow suit.

If the CA which has signed a website’s certificate is removed from a web browsers’ trusted CA list, the website’s users
will begin to receive security error messages when attempting to connect to the website. This may cause some
disruption and embarrassment to the organisation that owns the website until such time that the certificate is
replaced.

When choosing a CA to issue a certificate for a website or HTTP-enabled API, organisations should consider the
reputation and history of the CA, and other organisations that support or utilise the CA. Finally, the price of
certificates is not an indicator of security, quality or longevity.

Certificate Authorities in mail servers

Mail servers support TLS via a mechanism known as opportunistic TLS. Under opportunistic TLS, any encryption is
considered better than no encryption. Consequently, mail servers have historically accepted certificates which were
expired, not signed by a trusted CA or didn’t match the name of the receiving mail server. However, new standards
and improved server hygiene are beginning to challenge these practices.

Mail servers can use certificates to authenticate one another over the internet as part of establishing TLS. In
particular, sending mail servers can use the server certificate offered by the receiving mail server to identify that the
mail server is the intended destination of an email message.

As verification of certificates historically was not critical to email flow, mail servers may not have kept their internal
list of trusted CAs up to date and aligned with a lists of well-known and trusted public CAs. Hence, mail server
operators may find they need to implement processes to ensure the list of acceptable CAs on their mail servers are
maintained.

Implementing certificates, TLS, HTTPS and opportunistic TLS 3

In the absence of their own specific policy, mail server operators can choose one of the well-known web browsers and
follow the web browser’s list of approved CAs as trusted root CAs.

Types of certificates

CAs typically offer three products: Domain Validation (DV) certificates, Organisation Validation (OV) certificates and
Extended Validation (EV) certificates:

 DV certificates can be issued to anyone who demonstrates control over a domain.

 OV certificates include more details about the organisation to whom they are issued.

 EV certificates are considered to be of higher identity assurance than OV and DV certificates as they require an
organisation to provide extensive documentation to prove identity and ownership of a domain. Procuring EV
certificates takes greater time and resources compared to DV certificates. The issuance of these certificates
cannot be automated.

DV certificates provide sufficient confidentiality and authentication to suit most websites and can be obtained for
free, or at a price. Additional security or assurances are not achieved by paying for a DV certificate.

OV certificates are priced above DV certificates and allow for more organisational data to be added to the certificate.
Users won’t know the difference between a DV and an OV certificate without closely examining certificate details.

EV certificates are the most expensive and require additional identity checks before one can be issued. Common web
browsers such as Google Chrome, Firefox and Safari used to provide users with additional visual cues when an EV
certificate was being used, but this no longer occurs.

The three certificates types are differentiated by the level of assurance that a domain is owned by an organisation, not
by the level of encryption offered. A more expensive certificate does not provide a greater level of confidentiality.

Encryption algorithms

Certificate encryption and hashing algorithms should be selected from the Information security manual (ISM). These
can be specified with a CA when requesting a certificate. To change the algorithms being used a new certificate will
need to be issued.

Transport Layer Security

TLS is a cryptographic protocol that allows for end-to-end encrypted communications over a network. It is used in a
variety of applications and builds on the deprecated Secure Socket Layer (SSL) protocol developed by Netscape in
1994.

Versions of TLS earlier than TLS 1.3 may be susceptible to cryptographic compromise. If organisations need to use
older versions of TLS, care should be taken to select cipher suites and configure protocol features in accordance with
this guide and the ISM. SSL should not be used.

Cipher suites

A key element of understanding how TLS works is understanding what a cipher suite is. A cipher suite is a set of
algorithms that help secure a TLS connection. Cipher suites generally include three different algorithms:

 a key establishment algorithm for securely establishing a symmetric key between two devices

https://chromium.googlesource.com/chromium/src/+/HEAD/docs/security/ev-to-page-info.md
https://www.cyber.gov.au/resources-business-and-government/essential-cybersecurity/ism

Implementing certificates, TLS, HTTPS and opportunistic TLS 4

 a bulk encryption algorithm (which uses the symmetric key) for encrypting traffic that is sent over the
connection

 a Message Authentication Code algorithm for providing assurance that traffic is not modified in transit.

There are many different cipher suites. Selecting the right cipher suite is important as weak cipher suites increase the
risk to users’ confidentiality.

TLS 1.3 removed vulnerable cipher suites found in TLS 1.2, while introducing stronger cipher suites. Advice on
acceptable cipher suites is outlined in Annex A while advice on potentially acceptable cipher suites is outlined in
Annex B.

TLS handshake process

The following is a simplified explanation of the TLS handshake process:

 the client and server agree on the cryptographic protocol (e.g. TLS 1.3) and cipher suite

 the client authenticates the server:

 the server offers its certificate and proves that it holds the private key by signing a message which the client
can verify using the public key contained in the certificate

 the client verifies the identity of the server by checking the name of the server matches the name on the
certificate

 the client verifies that the certificate is valid by being in date, not revoked and issued by a CA which the
client trusts

 the server and client exchange the symmetric key.

More information on the TLS handshake process is available from Cloudflare.

Perfect Forward Secrecy

Perfect Forward Secrecy (PFS) is a feature of certain cipher suites that reduces the risk posed by compromised session
keys. With PFS, individual sessions have unique session keys. As a result, a compromised session key cannot be used
to decrypt other sessions. This means that attacks that rely on long-term storage of encrypted data become infeasible.
Organisations should only use cipher suites that support PFS.

Secure renegotiation and client-initiated renegotiation

TLS 1.3 does not use renegotiation, however, if using TLS 1.2 or earlier, renegotiation may be required under certain
circumstances. For example, when a session has expired but parties wish to send more data, a peer wants to change
cipher suites or there is a need for the parties to perform authentication. Unfortunately renegotiation is susceptible to
person-in-the-middle attacks. For TLS 1.2 or earlier, secure renegotiation should be enabled to reduce susceptibility to
person-in-the-middle attacks.

Client-initiated renegotiation, secure or otherwise, imposes a performance impact on web servers. A malicious client
can send many renegotiation requests to consume server resources causing a denial of service. For TLS 1.2 or earlier,
client-initiated renegotiation should be disabled to prevent denial-of-service attacks.

https://www.thesslstore.com/blog/cipher-suites-algorithms-security-settings/
https://www.cloudflare.com/en-au/learning/ssl/what-happens-in-a-tls-handshake/
https://nvd.nist.gov/vuln/detail/CVE-2009-3555
https://nvd.nist.gov/vuln/detail/CVE-2009-3555

Implementing certificates, TLS, HTTPS and opportunistic TLS 5

TLS compression

TLS compression was used to decrease the bandwidth of TLS communications. However, TLS compression has been
found to inadvertently leak information, as illustrated by the CRIME exploit. TLS compression should be disabled.

Review TLS settings regularly

Best practice TLS settings and cipher suites change as new standards are released, computing power increases and
vulnerabilities are discovered. Organisations should review their TLS and cipher suite configurations annually, or
whenever major vulnerabilities are publically disclosed, to ensure that protection remains effective and in line with
their customers’ expectations.

Hypertext Transfer Protocol Secure

HTTPS allows for secure communication across an untrusted network, reducing the ability of malicious actors to
monitor a user’s activity. Importantly, lack of HTTPS can erode trust in a website as common web browsers will alert
users when visiting such websites, and again when they try to enter any information on such websites. It should also
be noted that some web browsers will block content that is delivered over HTTP when connecting to a website over
HTTPS.

All website content should be delivered using HTTPS, and any attempted access to resources using HTTP should be
automatically redirected to the same resource over HTTPS. In addition, applications which make use of HTTP-enabled
APIs should also use TLS to protect the confidentiality and integrity of information in transit.

There are many myths suggesting reasons for not using HTTPS. These are debunked at Does My Site Need HTTPS.

HTTP Strict Transport Security

HTTP Strict Transport Security (HSTS) is a web security policy mechanism that helps protect users. It achieves this by
allowing web servers to tell web browsers that they should only interact with a web server over HTTPS. As such, web
browsers will dynamically adjust any HTTP requests to HTTPS requests. HSTS also helps to protect against
eavesdropping, person-in-the-middle attacks and active network attacks. Organisations should use HSTS to protect
users’ confidentiality.

Opportunistic TLS and email

Opportunistic TLS allows mail servers to use encryption to protect email in transit when the sending and receiving mail
servers both support TLS.

Before transferring data the sending mail server (if it is TLS capable) will ask the receiving mail server if it supports TLS.
If the receiving mail server indicates that it does then the two mail servers will begin trying to negotiate a TLS protocol
version and acceptable set of cipher suites. However, if the receiving mail server indicates it does not support TLS then
the sending mail server will proceed to transmit the email in plain text.

The necessity to be able to support plain text transfers to mail servers that do not support TLS makes opportunistic
TLS highly susceptible to downgrade (aka TLS strip) attacks by a person-in-the-middle.

Mail Transfer Agent Strict Transport Security and SMTP TLS Reporting

Similar to HSTS, Mail Transfer Agent Strict Transport Security (MTA-STS) provides a mechanism for a domain owner to
indicate that their mail servers support TLS encryption and that email should not be sent to those mail servers unless
satisfactory encryption can be established.

https://nvd.nist.gov/vuln/detail/CVE-2012-4929
https://www.chromium.org/Home/chromium-security/marking-http-as-non-secure
https://blog.mozilla.org/security/2017/01/20/communicating-the-dangers-of-non-secure-http/
https://developer.mozilla.org/en-US/docs/Web/Security/Mixed_content/How_to_fix_website_with_mixed_content
https://developer.mozilla.org/en-US/docs/Web/Security/Mixed_content/How_to_fix_website_with_mixed_content
https://doesmysiteneedhttps.com/
https://elie.net/blog/understanding-how-tls-downgrade-attacks-prevent-email-encryption/
https://elie.net/blog/understanding-how-tls-downgrade-attacks-prevent-email-encryption/

Implementing certificates, TLS, HTTPS and opportunistic TLS 6

An MTA-STS aware sending mail server which tries to send email to a domain that has published an MTA-STS policy in
enforce mode will only send the email if:

 it can negotiate at least a TLS 1.2 connection with the recipient mail server

 the recipient mail server presents a certificate to authenticate itself that:

 is signed by a CA trusted by the sending mail server

 aligns with the recipient mail server’s name as published in the domain’s MX record and MTA-STS policy

 is otherwise valid (e.g. not expired or revoked).

MTA-STS can prevent:

 downgrades in order to perform plain text attacks

 downgrades in order to perform lower protocol version attacks

 fake, untrusted, self-signed or otherwise invalid certificate attacks (where the person-in-the-middle terminates
the TLS session on their system relying on the weak certificate validation in opportunistic TLS).

SMTP TLS Reporting (TLS-RPT) is a related standard to MTA-STS. TLS-RPT provides a mechanism for a domain owner to
publish a location where other mail server operators can submit reports about their success or failure trying to initiate
encrypted sessions when sending email to the specified domain.

MTA-STS is defined in Internet Engineering Task Force (IETF) RFC 8461 and is supported by TLS-RPT as defined in IETF
RFC 8460.

MTA-STS policies are made available by publishing two pieces of information:

 a TXT record in DNS that indicates that the domain has an MTA-STS policy and the current version number
(_mta-sts.<example domain>)

 a MTA-STS policy (a plain text file) at the standard-required website location for the domain (https://mta-
sts.<example domain>/.well-known/mta-sts.txt).

An example of an MTA-STS TXT record is v=STSv1; id=2020060141732 where:

 v is the version

 id is the identification of the record that MTA-STS aware mail servers track to determine if they need to request
the policy file, which is usually only checked when the identification number in DNS is changed.

An example of a MTS-STS policy is:

version: STSv1

mode: testing

mx: *.example1.org.au

max_age: 600

Implementing certificates, TLS, HTTPS and opportunistic TLS 7

where:

 version is the MTA-STS version (currently only version 1 is supported)

 mode is the current approach to requiring TLS for email connections, testing should be used initially and then
increased in strictness to enforce as you become more confident

 mx is the mail server to which this policy applies

 max_age is the minimum time in seconds that this policy should be cached for.

TLS-RPT policies are implemented by:

 deciding whether to receive reports by email or HTTPS and creating a location to receive those reports (such as
an email address)

 publishing a TXT record in DNS for your domain (_smtp._tls.<your domain>) that indicates the reporting point for
TLS reports.

While TLS-RPT is not strictly required for MTA-STS, it should be enabled as part of your MTA-STS implementation to
detect any issues.

An example of a TLS-RPT policy is v=TLSRPTv1;rua=mailto:tlsresports@example1.org.au where:

 v is the version

 rua is the reporting address for TLS-RPT, specifying that reports should be sent by email.

Risks from MTA-STS

Implementing MTA-STS in enforce mode is an indication from a domain owner that confidentiality and integrity of
email flows are more important than availability. Consequently, the domain owner accepts that email flows may be
interrupted in preference to email potentially being intercepted, disclosed or modified by third parties.

Organisations looking to implement MTA-STS should:

 ensure adequate monitoring of email flows and that TLS-RPT is in place

 accept that, even with good monitoring, MTA-STS may occasionally cause disruption to email flows.

It is worth noting that once properly bedded in and configured, disruptions to email flows are likely to be either the
result of misconfiguration or malicious activity.

How to implement certificates, TLS and HTTPS

Which cipher suites and encryption methods to support

Picking strong cipher suites is important for users’ confidentiality. For the certificate signature algorithm,
organisations are encouraged to use Elliptic Curve Digital Signature Algorithm (ECDSA) (256-bit or larger) or Rivest-
Shamir-Adleman (RSA) (2048-bit or larger). If using elliptic curve cryptography, a curve from Federal Information
Processing Standard 186-4 should be used.

Implementing certificates, TLS, HTTPS and opportunistic TLS 8

Organisations should not use any cipher suite that uses the following algorithms as they have cryptographic
weaknesses:

 Rivest Cipher 2

 Rivest Cipher 4

 Message-Digest 5

 Data Encryption Standard

 EXPORT

 NULL

 Secure Hash Algorithm 1

 Anonymous Diffie-Hellman

 Anonymous Elliptic Curve Diffie-Hellman.

Advice on acceptable cipher suites is outlined in Annex A while advice on potentially acceptable cipher suites is
outlined in Annex B.

Pick and install a certificate

As mentioned previously, the three certificate types provide the same level of security differing only in the level of
assurance that a domain is owned by an organisation. Unless there is a business requirement for a higher assurance
certificate, a free DV certificate should be used. In addition, using a CA that provides support for the Automated
Certificate Management Environment (ACME) protocol will enable support for HTTPS in a low maintenance manner.

Let’s Encrypt is an example of a free DV certificate provider that supports ACME. A case study on setting up Let’s
Encrypt with automatic renewal of certificates is provided at the end of this publication. For more information on Let’s
Encrypt see their Getting Started guide.

Automate renewal of certificate

Organisations should endeavour to automate certificate renewal. This can be done using a CA that supports the ACME
protocol. Automation of certificate renewal minimises the risk that a website become insecure, or even inaccessible, if
its certificate isn’t renewed in time.

Certbot is a common ACME client that assists in obtaining and installing Let’s Encrypt certificates. It is simple, has
comprehensive documentation and works on many platforms. Certbot can setup HTTP redirects, HSTS and load all
resources through HTTPS. Alternatively, a list of alternate ACME clients is available on the Let’s Encrypt website.

Manual setup

If choosing to install a certificate manually, a Certificate Signing Request (CSR) will need to be created, the
corresponding certificate will need to be ordered and then the certificate will need to be installed.

There are several resources available to assist with this process such as wikiHow’s text tutorial and GlobalSign’s video
tutorials:

https://datatracker.ietf.org/doc/html/rfc8555
https://datatracker.ietf.org/doc/html/rfc8555
https://letsencrypt.org/
https://letsencrypt.org/getting-started/
https://news.netcraft.com/archives/2019/01/10/gov-security-falters-during-u-s-shutdown.html
https://news.netcraft.com/archives/2019/01/10/gov-security-falters-during-u-s-shutdown.html
https://certbot.eff.org/
https://letsencrypt.org/docs/client-options/
https://www.wikihow.com/Install-an-SSL-Certificate

Implementing certificates, TLS, HTTPS and opportunistic TLS 9

 How to Create a CSR using MMC

 How to Create a CSR in IIS 10

 How to Create a Java Key Store and Generate a CSR

 How to Create a CSR in Apache OpenSSL

 How to Install an SSL/TLS Certificate on Microsoft IIS

 How to install SSL/TLS Certificate on an Apache Tomcat Server

 How to Install an SSL/TLS Certificate on an NGINX server.

The SSL Store also has advice on creating a CSR and installing a TLS certificate.

Once manual setup has been completed, a TLS tester such as SSL Labs can check the implementation.

Redirect HTTP requests

To ensure that users trying to access a website over HTTP are redirected to HTTPS, the web server’s or reverse proxy’s
configuration should be edited. While syntax will differ between web server software, an example for Apache HTTP
Server is shown below that causes an HTTP 301 redirect whenever the HTTP version of the website is requested.

 RewriteEngine On

 RewriteCond %{HTTPS} off

 RewriteRule ^(.*)$ https://%{HTTP_HOST}%{REQUEST_URI} [L,R=301]

Note, rewrite rules can be complex and it is important to test configurations before and after deployment.

Alternatively, redirection can be achieved in IIS by using the Uniform Resource Locator (URL) Rewrite Module while
Let’s Encrypt and Certbot can setup redirects automatically when a certificate is obtained.

Regardless of how HTTP to HTTPS redirects are implemented, websites should redirect to the HTTPS version of the
website before redirecting elsewhere. For example, if redirecting requests for website.com.au to
www.website.com.au, make sure to first redirect to the HTTPS version of website.com.au before redirecting to
www.website.com.au. This is required for HSTS to operate correctly. Once the redirection configuration has been
tested and confirmed, it is best to use a 301 (permanent) redirect as this typically improves search engine rankings.

Check for mixed content

While users may be able to access a website over HTTPS, parts of the website may still be retrieved using HTTP, such
as images or embedded content. Most web browsers will block this mixed content. To check if a website has mixed
content issues, either use Firefox’s Web Console to view individual pages or use free online services such as Missing
Padlock – SSL Checker.

Improving search engine optimisation

Moving a website to HTTPS will result in search engines treating the website as new, which could place it lower in
search engine rankings. However, moving to HTTPS can also improve search engine rankings as many search engines
place websites loaded over HTTPS higher in their search results. To minimise any negative impact on websites’ search

https://www.youtube.com/watch?v=30JnI06Pj74
https://www.youtube.com/watch?v=mU7iuX4Cy3Y
https://www.youtube.com/watch?v=KPkPWx07zA8
https://www.youtube.com/watch?v=ZAE9p1_N6_Q
https://www.youtube.com/watch?v=nB3TFDkDkcU
https://www.youtube.com/watch?v=kud2Xsz98is
https://www.youtube.com/watch?v=RwZfDCDuyfg
https://www.thesslstore.com/knowledgebase/ssl-generate
https://www.thesslstore.com/knowledgebase/ssl-install
https://www.ssllabs.com/ssltest/
https://learn.microsoft.com/en-au/iis/extensions/url-rewrite-module/creating-rewrite-rules-for-the-url-rewrite-module
https://developer.mozilla.org/en-US/docs/Web/Security/Mixed_content
https://www.missingpadlock.com/
https://www.missingpadlock.com/
https://security.googleblog.com/2014/08/https-as-ranking-signal_6.html

Implementing certificates, TLS, HTTPS and opportunistic TLS 10

engine optimisations, new HTTPS websites can be added and verified, for example, in the Google Search Console. This
will re-crawl the website and submit a new XML sitemap for the HTTPS version.

HSTS header

Even when HTTPS configurations and HTTP redirects are setup correctly, a HSTS header should still be used. This will
ensure that for a specified period of time users will only be able to connect to a website using HTTPS. This is
recommended to prevent malicious actors from intercepting users’ initial HTTP requests. If using Let’s Encrypt and
Certbot, sending HSTS headers can be setup automatically when obtaining a certificate.

Further information on HSTS implementation is available from GlobalSign.

Sign up for the HSTS Preload List

Signing up for the HSTS Preload List ensures that a user’s web browser will prevent HTTP requests being made to
specified websites. This is different from a HSTS header as it occurs before a user has visited a website for the first
time, provided they are using a web browser which supports the pre-load list. Thus, users are protected from attacks
where malicious actors prevent the HSTS header from being sent, such as in person-in-the-middle attacks.

The advice at hstspreload.org should be followed to register websites for the HSTS Preload List.

Drop support for TLS 1.0 and TLS 1.1 immediately

All versions of TLS earlier than TLS 1.2, including SSL, are considered unsafe due to either having a flaw in the protocol
itself or using vulnerable cipher suites that could leak confidential information. As such, support for versions of TLS
earlier than TLS 1.2 will be dropped by Google, Mozilla, Microsoft and Apple starting in 2020. Importantly, if ongoing
support for TLS 1.0 or TLS 1.1 is required for any reason, organisations are strongly encouraged to contact the
Australian Signals Directorate to discuss possible risk mitigation strategies.

Be aware of TLS 1.2 limitations

TLS 1.2 or higher is required for HTTP Version 2 (HTTP/2), which provides significant performance improvements over
HTTP and should be supported in order to provide a better user experience. However, due to deficiencies in TLS 1.2
and some of the included cipher suites, use of HTTP/2 with TLS 1.2 is limited. For example, HTTPS may fail if non-
secure renegotiation and compression has not been disabled for TLS 1.2 in web server settings. Further advice on
limitations associated with the use of TLS 1.2 are available from the HTTP/2 standard.

Transitioning from TLS 1.2 to TLS 1.3

As noted earlier, TLS 1.3 provides many security and performance benefits over TLS 1.2 and earlier versions. A simple
way to disable older versions of TLS is to update web server configurations (e.g. an example configuration for Apache
HTTP Server would be to include SSLProtocol TLSv1.3 in the configuration file). In some cases, web server software will
need to be updated to the latest version to support TLS 1.3. In addition, if using a Content Distribution Network (CDN),
enabling TLS 1.3 for external clients may only require ticking a box in configuration settings. The encryption
configuration between any origin servers and the CDN may also require adjustment.

It is important to note though, as TLS is not backwards compatible, dropping support for TLS 1.2 will result in legacy
web browsers being unable to access websites using TLS 1.3. In such cases it is recommended that users be
encouraged to update their web browser to the latest version to receive support for TLS 1.3 and to protect their
confidentiality. However, if transitioning from TLS 1.2 to TLS 1.3 is not possible in the short term, risks to users can be
reduced by:

 removing support for compression

https://search.google.com/search-console/about
https://developers.google.com/search/docs/crawling-indexing/sitemaps/build-sitemap?visit_id=637675238925917250-3651472213&rd=1
https://www.globalsign.com/en/blog/what-is-hsts-and-how-do-i-use-it/
https://hstspreload.org/
https://security.googleblog.com/2018/10/modernizing-transport-security.html
https://blog.mozilla.org/security/2018/10/15/removing-old-versions-of-tls/
https://blogs.windows.com/msedgedev/2018/10/15/modernizing-tls-edge-ie11/
https://webkit.org/blog/8462/deprecation-of-legacy-tls-1-0-and-1-1-versions/
https://datatracker.ietf.org/doc/html/rfc9113

Implementing certificates, TLS, HTTPS and opportunistic TLS 11

 disabling client-initiated renegotiation

 disabling renegotiation if the version of TLS does not support secure renegotiation

 only enabling secure ciphers.

Advice on acceptable cipher suites is outlined in Annex A while advice on potentially acceptable cipher suites is
outlined in Annex B.

Mozilla’s wiki provides advice on TLS configuration, including example configurations for security, compatibility and
legacy systems. It also specifies what web browsers a particular configuration will be compatible with.

Additional resources

Additional resources on the implementation of TLS are available from the following sources:

 SSL Labs have advice on SSL and TLS Deployment Best Practices

 the Internet Engineering Task Force have published Recommendations for Secure Use of Transport Layer
Security (TLS) and Datagram Transport Layer Security (DTLS)

 Google’s Lighthouse tool can assist with locating HTTP-only content and also provides general tips on website
security

 Mozilla has a TLS configuration generator for different web server software

 Mozilla Observatory provides a HTTP and TLS score card for websites.

Case study using Let’s Encrypt and Certbot

This case study shows how to enable HTTPS using Let’s Encrypt and Certbot on Ubuntu 16.04 with Apache HTTP
Server. It uses a simplified deployment scenario where the web server will perform its own TLS termination and
generate its own certificate renewal requests. Depending on the security context, organisations may make use of
proxies and other security infrastructure as part of their solution.

Firstly, add the required software repositories and install Certbot by running the following commands:

 sudo apt update

 sudo apt install software-properties-common

 sudo add-apt-repository universe

 sudo add-apt-repository ppa:certbot/certbot

 sudo apt update

 sudo apt install certbot python-certbot-apache.

Once everything is installed, obtain a certificate by running the following command, sudo certbot --apache --rsa-key-
size 2048 --redirect –hsts where:

 --rsa-key-size 2048 sets the bit length of the RSA key to 2048

https://wiki.mozilla.org/Security/Server_Side_TLS
https://github.com/ssllabs/research/wiki/SSL-and-TLS-Deployment-Best-Practices
https://datatracker.ietf.org/doc/html/rfc9325
https://datatracker.ietf.org/doc/html/rfc9325
https://developer.chrome.com/docs/lighthouse/overview/
https://ssl-config.mozilla.org/
https://observatory.mozilla.org/

Implementing certificates, TLS, HTTPS and opportunistic TLS 12

 --redirect automatically makes the website redirect to the HTTPS version

 --hsts makes sure the HSTS header is automatically sent.

There is also a --uir flag that will attempt to change every HTTP resource on the website to HTTPS. This is potentially
dangerous as some resources might not have a HTTPS address, but if all resources on the website can be loaded
securely this is a quick way to automate the transition of resources from HTTP to HTTPS.

After running the above certificate generation command, Certbot will ask for an email address for renewal and
security notices. Type in the preferred email address and press Enter. Next, it will ask for agreement to their Terms of
Service. After reviewing, type ‘A’ and press Enter. Then, it will offer to send email from the Electronic Frontier
Foundation. Press ‘Y’ or ‘N’ and press Enter. Finally, Certbot will ask for the website’s domain. Type it in and press
Enter.

As certificates only last 90 days, certificates will need to be renewed often. Luckily, the Certbot packages come with a
Cron Job that will renew certificates automatically before they expire. To test that it is all working correctly, run the
following command, sudo certbot renew --dry-run. Note, the extra flags used when creating the certificate don’t have
to be specified as ‘renew’ will use the settings of the last successfully created/renewed certificate.

How to encrypt email with opportunistic TLS

Implementing opportunistic TLS to protect email flows shares many similarities with implementing HTTPS to protect
web traffic. Readers of this section should familiarise themselves with the section on implementing HTTPS as many
concepts are shared, and not repeated here to avoid repetition.

Protocol and cipher suite selection

Opportunistic TLS for email presents a slightly different threat scenario to HTTPS thereby requiring a different
approach to protocol and cipher selection. Key differences are:

 a downgrade attack against opportunistic TLS results in plain text communication as opposed to a weaker
version of TLS

 mail server TLS support is not as well homogenised or regularly updated as TLS support in web browser and web
server software.

By choosing to only support modern versions of protocols and cipher suites you may prevent older mail servers from
using any encryption at all. Consequently, you may wish to accept the risk of continuing to support older, less secure
protocol version and ciphers on the basis that some encryption is better than none. However, care should be taken in
configuring these older versions of TLS to minimise risk. Further, you should consider using MTA-STS to reduce the risk
of downgrade attacks.

Mail servers should:

 support the latest version of TLS (currently 1.3), TLS 1.2 (for compatibility with MTA-STS) and optionally TLS
versions as old as TLS 1.0

 not support any version of SSL

 not support TLS compression

 not support TLS renegotiation, or only support secure server-initiated renegotiation

Implementing certificates, TLS, HTTPS and opportunistic TLS 13

 avoid ciphers noted as weak in the ‘which cipher suites and encryption methods to support’ section above.

Certificates for mail servers

Mail servers should have valid server certificates issued by well-known CAs, such as Let’s Encrypt, so that other mail
servers can positively authenticate them over the internet. This becomes critical if implementing an MTA-STS policy.

The advice on obtaining and keeping certificates up to date in the HTTPS section above is also applicable.

Mail Transfer Agent Strict Transport Security

Google, who are one of the key sponsors of MTA-STS and TLS-RPT, have provided a useful guide to implementing
MTA-STS. This guide can be read in conjunction with the RFCs. In addition, there are tools that can help verify the
correctness of your MTA-STS policy.

The following sections provide further guidance on implementing MTA-STS and TLS-RPT as an email sender (making
your mail servers aware of MTA-STS and TLS-RPT policies published by others) and email recipient (publishing MTA-
STS and TLS-RPT policies).

Making your mail servers MTA-STS aware

To make others’ MTA-STS policies effective, and prevent downgrade attacks on email sent by your organisation, your
mail servers need to look for, interpret and apply MTA-STS policies published by other domain owners.

Your ability to support the application of MTA-STS policy to outbound email will be largely contingent on your mail
server offering an appropriate feature or policy agent. However, once this is available, enabling it will be a relatively
low risk change.

The following checklist will assist in making your mail servers MTA-STS aware:

 Identify a policy agent or configuration option for your edge mail server (the mail servers that relay email, using
MX records, to other domains over the internet) which can interrogate and apply MTA-STS and TLS-RPT policies.

 Review how you currently maintain trusted CAs on the mail server where you are implementing the MTA-STS
policy agent, and ensure that there is a process (ideally automated) for keeping this list aligned with one of the
major web browser lists of accepted CAs.

 Ensure your mail server can support TLS 1.2.

 Implement the policy agent.

 Monitor the sending of email by your mail server and ensure it continues to send successfully to MTA-STS
enabled domains.

Note, MTA-STS requires mail servers to support TLS 1.2. Mail servers should also be configured with TLS 1.3 where
possible. This allows negotiation of a more secure cryptographic protocol if both servers are able.

Publishing an MTA-STS policy for your domain

Publishing an MTA-STS policy for your domain is a change you can immediately implement, provided your inbound
mail servers (the ones identified by your domain’s MX records) support at least TLS 1.2.

A suggested implementation plan for publishing an MTA-STS policy for your domain is:

https://support.google.com/a/answer/9261504?hl=en
https://support.google.com/a/answer/9261504?hl=en
https://esmtp.email/tools/mta-sts/?
https://esmtp.email/tools/mta-sts/?

Implementing certificates, TLS, HTTPS and opportunistic TLS 14

 Review your domain’s mail servers’ (the servers identified in your domain’s MX record) cryptographic
configuration and certificate. Ensure that your email severs:

 support TLS 1.2, and ideally TLS 1.3, noting the advice earlier in this publication that you may want to risk
manage using TLS versions as low as 1.0

 have disabled weak ciphers, and all forms of SSL

 are configured with a certificate which correctly authenticates the server, and is issued by a well-known and
trusted CA in all major web browsers’ trusted CA list; also consider automating the renewal of certificates as
after implementing MTA-STS a certificate expiry will interrupt email flow and potentially be time consuming
to identify

 use online TLS checking tools to confirm the mail server is operating as intended.

 Create a reporting point for TLS-RPT (either email or HTTPS).

 Publish a TLS-RPT policy.

 Monitor reports received via your reporting point and use them to confirm that other mail servers are able to
successfully negotiate TLS, at a sufficient level, when communicating with your mail servers. If reports identify
any issues try to correct them before moving on.

 Prepare and publish a test MTA-STS policy:

 create a new website with a new certificate issued by a well-known and trusted CA (mta-sts.<yourdomain>)

 create an MTA-STS policy for testing

 publish your test MTA-STS policy at the standard-required location on your new website (https://mta-
sts.<yourdomain>/.well-known/mta-sts.txt)

 use tools such as a web browser to confirm that the MTA-STS policy is correctly served when going to the
standard-required location.

 Publish your MTA-STS TXT record in DNS:

 create the relevant DNS entry

 use a short timeout (TTL) for the DNS record so you can reverse the change if you encounter any errors

 verify it is configured correctly.

 Continue to monitor TLS-RPT for any issues. Once satisfied that everything is behaving as expected, move to
testing an enforcing policy.

 Prepare and publish a new enforcing policy:

 create a new policy file, using enforcing mode and a new policy ID, using a low lifetime for the policy so that
changes can be reversed if necessary

 publish the new policy file to the standard-required location and adjusting the MTA-STS TXT record in DNS to
the new ID reference number.

https://www.hardenize.com/
https://www.hardenize.com/

Implementing certificates, TLS, HTTPS and opportunistic TLS 15

 Once published:

 confirm correct configuration using tools

 verify email continues to flow by monitoring mail server logs

 continue to monitor TLS-RPT to identify if any mail servers on the internet report issues.

 Once you are confident your enforcing policy is working as expected:

 increase the lifetime timeout on your policy, note that every time you adjust this policy you should also
change the policy ID in the MTA-STS TXT record in DNS so that sending mail servers are aware of the policy
change

 increase the cache time for the MTA-STS TXT record in DNS, noting increasing your policy lifetime and the
DNS cache time reduces the opportunity for malicious actors to try and bypass your policy by preventing
others from being able to retrieve your policy.

Implementing MTA-STS with a service provider

If you use service providers, implementing MTA-STS may require a different approach. Unfortunately, it is not possible
to provide an exhaustive list of all possible arrangements, but two common scenarios are where a service provider is
used to scan inbound email before it is delivered to your own mail server, or host your entire email system (such as
Microsoft 365 or Google Gmail). In these cases, you, as the domain owner, will be responsible for determining and
publishing MTA-STS and TLS-RPT policies, but your service provider will be responsible for configuring adequate
encryption and valid certificates on the mail servers they operate.

While most service providers will likely operate their mail servers at the necessary standard, you should still confirm
they meet and will maintain the necessary standards before attempting to implement MTA-STS. In most cases,
implementing TLS_RPT will be a safe option irrespective of your service provider’s position. This will allow you to
review what encryption other mail servers on the internet achieve when connecting to your service provider’s
systems.

The implementation of an MTA-STS policy should largely follow the plan laid out in the ‘publishing an MTA-STS policy
for your domain’ section above, although it will be your service provider’s mail servers being specified.

Edge cases

MTA-STS includes no inheritance mechanism for managing subdomains. If MTA-STS protection is required for
subdomains, they will need their own DNS TXT record (e.g. _mta-sts.subdomain.example1.org.au) and standard-
required policy location. However, in general, subdomains will only require protection if they receive email (i.e. they
have an MX record published).

Example implementation of MTA-STS

Maria is the systems administrator for Example1 (example1.org.au) and wishes to implement MTA-STS to protect the
confidentiality and integrity of email. Inbound email to Example1 is handled by two mail servers,
mail1.example1.org.au and mail2.example1.org.au.

example1.org.au. 86400 MX 10 mail1.example1.org.au.

 86400 MX 10 mail2.example1.org.au.

https://www.hardenize.com/

Implementing certificates, TLS, HTTPS and opportunistic TLS 16

Maria begins by reviewing the TLS configurations on mail1.example1.org.au and mail2.example1.org.au. Maria
confirms each server supports the necessary versions of TLS, disables SSL and weak ciphers, and ensures that each
mail server has a certificate issued by a well-known and trusted CA. Because Maria doesn’t want email flows
interrupted by certificates expiring, she also takes the time to automate certificate renewal.

When Maria is finished she uses an online tool to verify the offered cryptography meets the intended configuration
and makes a diary note to check in 80 days (as the certificates expire in 90 days) that the mail server certificates have
been renewed correctly.

After reviewing IETF RFC 8460, Maria decides to use email to receive reports and creates the
tlsreports@example1.org.au email address for this purpose.

After confirming this email address can receive email, Maria moves to the next step and publishes the TLS-RTP policy.
Maria is aware that publishing the TLS-RTP address is relatively safe and sets a moderately long timeout of one day
(86,400 seconds):

_smtp._tls.example1.org.au. 86400 TXT v=TLSRPTv1;rua=mailto:tlsresports@example1.org.au

Over the next week Maria reviews the reports received until she is confident things are operating as they should.

Maria then reviews IETF RFC 8641, to re-familiarise herself with its requirements, and also reviews other online
material.

Maria begins to devise an MTA-STS policy based on her understanding of RFC 8641 and examples she has seen
elsewhere. Maria decides to set the policy cache lifetime to 600 seconds (ten minutes) while she is testing. Maria also
decides to specify the MX servers using wildcard MX syntax, allowing her to add or change MX servers later provided
she maintains the same naming standard. The resultant policy is thus:

version: STSv1

mode: testing

mx: *.example1.org.au

max_age: 600

Having drafted a MTA-STS policy, Maria moves to the next step of creating the necessary website to host the policy
file. Maria notes the website only needs to host a static file and considers hosting the content on a cloud service
provider’s bucket service combined with a content delivery network to provide TLS, but in the end chooses to create a
new website on an existing webserver. As such, Maria:

 creates a new website on the server for mta-sts.example1.org.au

 creates a subdirectory .well-known and puts the policy file from above in there as mta-sts.txt

 configures TLS on the website using a wildcard certificate (*.example1.org.au) that she already has on the web
server for other websites

 creates a DNS A record pointing mta-sts.example1.org.au at the web server’s IP address

 uses a web browser on an external connection to ensure that https://mta-sts.example1.org.au/.well-
known/mta-sts.txt serves the MTA-STS policy file she created earlier.

Implementing certificates, TLS, HTTPS and opportunistic TLS 17

Having completed all prerequisites, Maria is now ready to make the MTA-STS policy live by publishing a DNS record to
indicate the policy is available. Maria wants to be able to quickly change the policy in case there are problems so she
choose a low DNS cache time (aka TTL) of 300 seconds (5 minutes). From the RFC she knows the value of the ID
number in the TXT record is not important, except that changing it indicates a new policy is available. Maria notes
from the examples she has seen that using a timestamp in YYYYMMDDHHMM format (e.g. 202006071753 for 5:53pm
on 07/06/2020) appears to be a common practice and decides to adopt it.

Maria sets the following DNS record:

_mta-sts.example1.org.au. 300 TXT v=STSv1; id=202006071753

Maria uses an online tool to confirm that the configuration appears correct.

Maria doesn’t anticipate any email flow issues as the policy is in testing mode, but nevertheless closely monitors email
flows immediately afterwards, and also monitors web server logs to determine the MTA-STS policy is being requested.

For the next week Maria keeps a close eye on mail flows and also reviews any SMTP TLS reports received by the
address she created earlier. After a week there have been no problems and Maria decides to implement an enforcing
policy. As such, Maria opens the policy file on the mta-sts.example1.org.au website and changes the mode to enforce,
but leaves the max_age the same so she can reverse the change quickly if needs be. The file now reads:

version: STSv1

mode: enforce

mx: *.example1.org.au

max_age: 600

Having adjusted the policy, Maria notifies the change to other mail servers on the internet by changing the ID value in
the _mta-sts.example1.org.au TXT record, but leaves the DNS cache time at a relatively low 300 seconds so she can
undo any changes if there are issues.

_mta-sts.example1.org.au. 300 TXT v=STSv1; id=2020060141732

Maria uses an online tool to confirm that the configuration appears correct.

Maria knows this change may impact email flow, so in addition to closely monitoring email flows immediately
afterwards, she also uses an online account of an MTA-STS aware webmail service to send a test email to her email
address at example1.org.au and confirms receipt.

With the enforcing policy in place, Maria keeps a close eye on email flows over the next month. Satisfied that
everything is working as it should, Maria makes two final changes:

 she sets the max_age in the mta-sts.txt policy file to 86,400 (one day)

 she adjusts the ID number in the _mta-sts.example1.org.au to the current time in YYYYMMDDHHMM format to
notify other mail servers on the internet of the change.

Finally, Maria makes a note in her diary to re-evaluate the max_age setting in six months’ time, and lift it to a week, a
month or even more depending on whether any issues with email flow are encountered.

Implementing certificates, TLS, HTTPS and opportunistic TLS 18

Further information
The Information security manual is a cybersecurity framework that organisations can apply to protect their systems
and data from cyberthreats. The advice in the Strategies to mitigate cybersecurity incidents, along with its Essential
Eight, complements this framework.

Contact details
If you have any questions regarding this guidance you can write to us or call us on 1300 CYBER1 (1300 292 371).

https://www.cyber.gov.au/resources-business-and-government/essential-cybersecurity/ism
https://www.cyber.gov.au/resources-business-and-government/essential-cybersecurity/strategies-mitigate-cybersecurity-incidents
https://www.cyber.gov.au/resources-business-and-government/essential-cybersecurity/essential-eight
https://www.cyber.gov.au/resources-business-and-government/essential-cybersecurity/essential-eight
https://www.cyber.gov.au/about-us/about-acsc/contact-us

Implementing certificates, TLS, HTTPS and opportunistic TLS 19

Annex A: Acceptable cipher suites
This annex contains a list of acceptable cipher suites. Cipher suites are listed in their order of preference.

All cipher suites below are listed in their Internet Assigned Numbers Authority names. Different web server software
may use different syntax. Websites are available to assist in translating cipher suite names.

Cipher suites for TLS 1.3

The following cipher suites are recommended for use with TLS 1.3:

 TLS_AES_256_GCM_SHA384

 TLS_AES_128_GCM_SHA256

 TLS_AES_128_CCM_SHA256

 TLS_AES_128_CCM_8_SHA256.

https://ciphersuite.info/

Implementing certificates, TLS, HTTPS and opportunistic TLS 20

Annex B: Potentially acceptable cipher suites
This annex contains a list of potentially acceptable cipher suites. Cipher suites are listed in their order of preference.

All cipher suites below are listed in their Internet Assigned Numbers Authority names. Different web server software
may use different syntax. Websites are available to assist in translating cipher suite names.

Cipher suites for TLS 1.3

Organisations may make a risk-based decision on the use of TLS_CHACHA20_POLY1305_SHA256 as it may provide
better performance on platforms which do not have Advanced Encryption Standard (AES) hardware support, such as
ARM-based mobile phones, tablets and low-end laptops. However, while there are no publically disclosed weaknesses
with this cipher suite, it has not been subjected to the same standard of review and analysis as cipher suites that
comply with the ISM.

Cipher suites for TLS 1.2

Organisations continuing to use TLS 1.2 will need to make a risk-based decision on its use as it no longer complies with
the ISM. In doing so, the following cipher suites are recommended for use with TLS 1.2:

 TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

 TLS_DHE_DSS_WITH_AES_256_GCM_SHA384

 TLS_DHE_RSA_WITH_AES_256_GCM_SHA384

 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

 TLS_DHE_DSS_WITH_AES_128_GCM_SHA256

 TLS_DHE_RSA_WITH_AES_128_GCM_SHA256

 TLS_ECDHE_ECDSA_WITH_AES_256_CCM

 TLS_DHE_RSA_WITH_AES_256_CCM

 TLS_ECDHE_ECDSA_WITH_AES_256_CCM_8

 TLS_DHE_RSA_WITH_AES_256_CCM_8

 TLS_ECDHE_ECDSA_WITH_AES_128_CCM

 TLS_DHE_RSA_WITH_AES_128_CCM

 TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8

 TLS_DHE_RSA_WITH_AES_128_CCM_8.

https://ciphersuite.info/

Implementing certificates, TLS, HTTPS and opportunistic TLS 21

Organisations may make a risk-based decision on the use of the following cipher suites as they may provide better
performance on platforms which do not have AES hardware support, such as ARM-based mobile phones, tablets and
low-end laptops. However, while there are no publically disclosed weaknesses with these cipher suites, they have not
been subjected to the same standard of review and analysis as cipher suites that comply with the ISM:

 TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256

 TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256

 TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256

 TLS_ECDHE_ECDSA_WITH_CAMELLIA_256_GCM_SHA384

 TLS_ECDHE_ECDSA_WITH_ARIA_256_GCM_SHA384

 TLS_ECDHE_RSA_WITH_CAMELLIA_256_GCM_SHA384

 TLS_ECDHE_RSA_WITH_ARIA_256_GCM_SHA384

 TLS_DHE_DSS_WITH_CAMELLIA_256_GCM_SHA384

 TLS_DHE_DSS_WITH_ARIA_256_GCM_SHA384

 TLS_DHE_RSA_WITH_CAMELLIA_256_GCM_SHA384

 TLS_DHE_RSA_WITH_ARIA_256_GCM_SHA384

 TLS_ECDHE_ECDSA_WITH_CAMELLIA_128_GCM_SHA256

 TLS_ECDHE_ECDSA_WITH_ARIA_128_GCM_SHA256

 TLS_ECDHE_RSA_WITH_CAMELLIA_128_GCM_SHA256

 TLS_ECDHE_RSA_WITH_ARIA_128_GCM_SHA256

 TLS_DHE_DSS_WITH_CAMELLIA_128_GCM_SHA256

 TLS_DHE_DSS_WITH_ARIA_128_GCM_SHA256

 TLS_DHE_RSA_WITH_CAMELLIA_128_GCM_SHA256

 TLS_DHE_RSA_WITH_ARIA_128_GCM_SHA256.

Disclaimer

The material in this guide is of a general nature and should not be regarded as legal advice or relied on for assistance
in any particular circumstance or emergency situation. In any important matter, you should seek appropriate
independent professional advice in relation to your own circumstances.

The Commonwealth accepts no responsibility or liability for any damage, loss or expense incurred as a result of the
reliance on information contained in this guide.

Copyright

© Commonwealth of Australia 2021.

With the exception of the Coat of Arms, the Australian Signals Directorate logo and where otherwise stated, all
material presented in this publication is provided under a Creative Commons Attribution 4.0 International licence
(www.creativecommons.org/licenses).

For the avoidance of doubt, this means this licence only applies to material as set out in this document.

The details of the relevant licence conditions are available on the Creative Commons website as is the full legal code
for the CC BY 4.0 licence (www.creativecommons.org/licenses).

Use of the Coat of Arms

The terms under which the Coat of Arms can be used are detailed on the Department of the Prime Minister and
Cabinet website (www.pmc.gov.au/resources/commonwealth-coat-arms-information-and-guidelines).

For more information, or to report a cybersecurity incident, contact us:

cyber.gov.au | 1300 CYBER1 (1300 292 371)

	Introduction
	Encrypting web traffic
	Encrypting email traffic
	Public Key Infrastructure

	How certificates, TLS, HTTPS and opportunistic TLS work
	Certificates
	Certificate Authorities in web browsers
	Certificate Authorities in mail servers
	Types of certificates
	Encryption algorithms

	Transport Layer Security
	Cipher suites
	TLS handshake process
	Perfect Forward Secrecy
	Secure renegotiation and client-initiated renegotiation
	TLS compression

	Review TLS settings regularly

	Hypertext Transfer Protocol Secure
	HTTP Strict Transport Security

	Opportunistic TLS and email
	Mail Transfer Agent Strict Transport Security and SMTP TLS Reporting
	Risks from MTA-STS

	How to implement certificates, TLS and HTTPS
	Which cipher suites and encryption methods to support
	Pick and install a certificate
	Automate renewal of certificate
	Manual setup

	Redirect HTTP requests
	Check for mixed content
	Improving search engine optimisation
	HSTS header
	Sign up for the HSTS Preload List

	Drop support for TLS 1.0 and TLS 1.1 immediately
	Be aware of TLS 1.2 limitations
	Transitioning from TLS 1.2 to TLS 1.3
	Additional resources
	Case study using Let’s Encrypt and Certbot

	How to encrypt email with opportunistic TLS
	Protocol and cipher suite selection
	Certificates for mail servers
	Mail Transfer Agent Strict Transport Security
	Making your mail servers MTA-STS aware
	Publishing an MTA-STS policy for your domain
	Implementing MTA-STS with a service provider
	Edge cases
	Example implementation of MTA-STS

	Further information
	Contact details
	Annex A: Acceptable cipher suites
	Cipher suites for TLS 1.3

	Annex B: Potentially acceptable cipher suites
	Cipher suites for TLS 1.3
	Cipher suites for TLS 1.2

